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Through a detailed analysis of the properties of a system of differential 
equations, bounds are given for the error affecting the final result of a numerical 
integration. These bounds appear to be narrower than those obtained with 
other methods. The key procedure is to consider carefully the linear part of the 
system and to bound it taking account of all possible errors. No very significant 
restriction is made on the system. 
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1. I N T R O D U C T I O N  

One of  the biggest problems of  numerical analysis is to find nar row bounds  
to the results of the numerical  integrat ion of systems of differential 
equations. For  a single step of integration, using a step of integration suf- 
ficiently small, the different methods at hand  give the possibility of  having 
an error  as small as we like, until the round-off  error  of the machine. But 
when we go ahead in the integration,, the error  due to the not  exact 
knowledge of the variables propagates  and grows up tendentiaUy in an 
exponential  way. So care has to be t a k e n  to evaluate the final error  of  
integration. One of  the most  popular  methods  in recent time is to use inter- 
val analysis to obtain the bounds  for these errors. Essentially this method  
substitutes numbers  with intervals, defines the arithmetic operat ions  with 
such intervals, and at the end gives the interval containing the exact 
solution. But such method  works well only in very special cases (short  time 
of integration, mot ion  in a small region a round  the origin) because of  the 
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exponential growth of the amplitude of the intervals. The fact is that the 
method does not take sufficient consideration of the properties of the 
system. And so, for example, even if the system has a strong atracting 
stationary solution, the interval continues to grow exponentially. 

Here we present a method that considers very carefully the properties 
of the system and give bounds which formally are still exponentially 
divergent in time, but in fact, in many cases, nearly linearly divergent. 

We apply the method to a very simple dynamical system; comparison 
with the results of interval analysis shows that the present method is much 
better. 

The system we studied has the phase space volume contraction at con- 
stant rate typical of the Fourier truncations of Navier-Stokes equations. At 
the end we add some further observations about the consequence of this 
property for the quantities we have to control. 

2. N O T A T I O N S  A N D  RESULT 

We refer heavily to the previous paper. (~)4 The result contained there 
that we exploit in the present context is Proposition I of Section 5. 

We now give some notations and definitions in such a way that the 
meaning of the proposition can be clear and easily understood. The reader 
is referred to Ref. 1 for all proofs and a detailed discussion. 

Let 
.~ = F(x) (1) 

be an autonomous system of ordinary differential equations in R": 

x = (xl,..., x , ) ,  F(x)  = (fl(x), . . . ,  f~(x))  

Let Xo(t) be the solution of (1) such that Xo(to) = Xo and consider the linear 
differential equation 

= F'(xo(t))z  (2) 

where F'(xo(t))  is the matrix 

( ~f,(xo(t))) 

Denote by 5r t) the fundamental matrix solution of (2) such that 
L~(s, s )=  E, where E is the identity matrix; it means that the solution of 
(2), which at time to is in Z0, is given by 

z ( t ) = ~ ( t o ,  t)Zo, t>~to 

4 Corrected proofs did not arrive in time and so in Ref. 1 x i denotes both the/-component of x 
and a point of the pseudotrajectory. Here we prefer not to change notations knowing that 

either meaning will be clear from the context. 
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For any fixed T define 

c~(T) = sup ]l&a(s, t)l[ 
O~s~I~T 

Denote then by {xK, k = 0 , 1  ..... N} the pseudotrajectory obtained 
integrating (1) numerically (N is given by T/A where A is the integration 
step). Finally define 

IlFIt = sup tF(xK)I 
K 

I[f(l)ll = sup Ilf'(xx)ll 
K 

[If(2)ll = sup ][f(Z)(xx)ll 
K 

IlF(3)[I = sup [IF(3~(x)ll 
x 

The first two definitions are clear while the norm IIF(R)(XK)il is defined by 

]r"(xK) XY[ <~ Ilf(2)(x,~)ll IXI t YI 

valid for every choice of vectors X and Y; we used the shortened notation 

(632fl(xK) * 02fn(x~:) Xiyj ) 
Ftt(xK)XY= 2 ~Xi-~jXj ~iYJ ..... ~ ~Xi~Xj 

i j i,j 

The norm NF(3)(x)II is defined similarly by 

fF"(x) XYZI <~ IIF(3)(x)[[ IX[ I YI IZl 

with an obvious meaning for the vector F"(x) XYZ. 

Romark. Note that the norms are  evaluated along the pseudotrajec- 
tory, except [IF(3)(x)[] that has to be considered on the whole space or, bet- 
ter, in a region that certainly contains the motion. Observe also that if F(x) 
is a polynomial of the third degree, IlF(31(x)[[ is constant, while, obviously, 
if F(x) is a quadratic polynomial ,  IlF(3)(x)l[ is identically zero. 

In any case we are not restricted to polynomial expressions. 
We can now state the following fundamental propostion. 

Proposition. Denoting by e the global error in one step of 
integration, i.e., the sum of the round-off error and the error due to the 
numerical procedure of integration (we always use Tay lo r  expansion for 
the sake of simplicity), if 

NeP~'(T)Tc~I( T)ot ~ p (3) 
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where p is such that 

and 

then 

and 

where 

7(T) = 292(T) eeT[[[F(2)ll + 3e~r I[F~3)II %(T)p]  

IxK-x(kA)l  ~eR'(K~)K~ [- 0: I[~~ 

IN--1 1 IXN--X(T)I ~<e pT(rw ~ j  II2#(j3, NA)I/ 6(T)~ t_ 0 

(4) 

(5) 

(6) 

(7) 

6(t) = 1 + pT(t) te IIf~1)113 

Remark 1. The bound (7) for the distance of the pseudotrajectory 
from the exact solution is formally exponential in time, as expected, but a p 
satisfying (3) can be much smaller than the value giving equality in (4), so 
the bound (7) in fact depends linearly on T for a large interval of values of 
T, if r163 does not grow exponentially, which is often the case. 

Remark 2. In a sense (7) is the best possible bound for [XN--X(T)[ 
and in some cases can be a good improvement of simply taking N~I(T) 
instead ~ HL~~ NA)H 6(T), especially if I[~(s, T)IL is much smaller than 
its maximum value in a large part of its trajectory. We did not try to 
optimize the expression exp[pT(T)T] 6(T) taking the right dependence on 
time, because we have in mind small values of p, in such a way that this 
term is in any case nearly 1. We also observe that we can in fact substitute 
(3) with a recursive application of (6): the Proposition is valid if 

1 ] 
ePT(T)TK<~NSUp k OJ 1[2#(JA' kA)ll 6(T)~<.p 

The present formulation of the Proposition comes from the proof of 
Proposition 1 in Ref. 1 once we note the following: 

(a) In Lemma 1 we can substitute supo~,~t  I1s r)ll e ~' with 

[l&~ t) l[+fl  hl~'(O,s)[[ds'e~t<~ II~q~(0, t)[L+fl II~r e ~' 
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operating directly in the integral inequality (12), using Ix(t)-Xo(t)! <<, 
2cgl(T) ]x-x0]  to linearize it. 

(b) In Lemma 2, instead of sup0~r~, FlSe(0, r)Pt, we now have a 
factor 

I1~(o, t)ll +p~(t) II~(O,s)li ds 

and an analogous factor in its corollary. 
We observe that if we take the supremum in t of the expressions we 

obtained, the results are worse than those in Ref. 1, but as we observed, 
with /~T very small (in our case /3T is firstly 10 -5 and then 10 -2, and 
pT(T) Te tl~l~ll~ ~2/?T), the present bounds are in fact better. 

In Ref. 1 is also contained a discussion of the biggest numerical 
problem connected with the present context, the problem of the deter- 
mination of a rigorous, not large bound, for cgl(T ). 

3. A P P L I C A T I O N S  

We first consider a very simple nonlinear differential system just to 
control if the results are as we expect them. Let it be 

2 = x y - x + R  
(8) 

= _ x  2 _ y 

For such a system the solution is always bounded: if (Xo, Yo) is the 
initial point, the solution is contained in the sphere of radius r, 

r=max[R, (x2+ yg) ~/2] for R > 0  

It can be shown that the system (8) for R > 0  has always only one 
stationary solution which is stable. 

We apply interval analysis for different values of the forcing R to have 
different sizes of the integral curves. 

While it is obvious that the final interval containing the exact solution 
of the equation 2 = x grows exponentially, it is very inconvenient that the 
same happens applying interval analysis to differential systems with 
negative velocity terms. It is easy to see that, apart from less important fac- 
tors, the amplitude of the interval containing the exact solution for a 
system like (8) grows with the number N of steps oflntegration as 

5o(1 -1- ~)N(1 -k- 2zJ/)N~ ~o(1 -4- 2Al) N (9) 
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where A is the step of integration, ~o is the initial size of the interval, ~ is 
the total error (round-off and Taylor truncation) of one step of integration 
and I is a geometrical parameter that gives the size of the orbit. This is the 
contribution of the quadratic terms which are predominant if l is bigger 
than 1. If the coefficients were different from + 1, they would appear as a 
factor in the term 2AL We expect for example that nothing essentially 
changes if we stay near the stationary solution (x0, Y0) and substitute (8) 
with 

2 = x o y - x + R  
(lO) 

= - X o X -  y 

apart from the suppression of the factor 2 due to the linearization of the 
system and a consequent doubling of the time needed for the "explosion" of 
the intervals. It is to be stressed that, according to (9), if for some orbit 
there is the explosion of intervals at time T, this time increases very little 
improving c~, for example from 10 -15 to 10 -18. We note furthermore that 
also doing the integration operations in the best order to decrease the 
error, or applying different (reasonable) definitions of multiplication of 
intervals, there is no essential change. 

Another obvious consequence is that if we make the transformation 
x --, x/C, y --* y/C, R ~ R/C, C > 1, in the new variables the orbit is a factor 
C smaller, but a factor C appears in the equations and so nothing changes. 

The results of interval analysis that we obtained with different values 
of R, and consequently different size of the orbits, are in good agreement 
qualitatively and quantitatively with these predictions. For example for 
R = 10, the orbit tends to the stationary solution (2, - 4 ) ;  with T =  1 and 
A = 1/N we have 

(1 +2 l ) N . ~ e 9 1 0 3  

so, if c~ ~ 10-15, we can expect that for T = 5 the interval is large. We found 
that, starting from (5, 8), for T =  4 the interval amplitude is of the order of 
the unity. For R = 130 the stationary solution is (5, -25) ,  and starting still 
from (5, 8) the system explodes at T,-~ 1.3-1.4. Obviously, in all these cases, 
the usual integration gives the stationary solution for any time, as long as 
we like, because the attractivity compensates for the errors of integration. 
Observe also that ~I(T) for the system (10) goes to a constant value. 

Another interesting fact is that the result does not improve decreasing 
the step of integration and considering the same final time of integration, 
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but, on the contrary, there is some light worsening; this happens to be con- 
nected to the fact that 

is increasing in N. 

(1 
For the sake of simplicity we are here reporting what happens in the 

case of a stationary solution of a simple system. In fact all these behaviors 
were tound applying interval analysis to the periodic orbits of the Lorenz 
system studied in Ref. 1. 

We go now to the method proposed. We apply it to the following 
system of differential equations: 

Y l  = SY2 Y3 - B y l  + R 

y2 ~-- --  S y  x Y3 --  By2  q- C y  3 ( 1 1 )  

;f3 = - -3By3 9 - -  ~.~Cy 2 

It comes out, for some particular choice of orography and forcing, from 
Fourier truncation of a partial differential equation, the quasigeostrophic 
equation, which describes the long-time and large-scale atmosphere 
dynamics. 

The system is quadratic so [IF~ =0,  HF(2)I[ = c o n s t a n t = s  and the 
conditions of the proposition simplify to 

2c-ff2(T)p IIF(2)H T =  2/~T~ 1, 7(T) = 2cg~(T)e ~'r I[F(2)II 

The system has still only bounded solutions. The boundness of the orbit is 
necessary to have uniform bounds for the rest of Taylor and for the round 
off error. 

The value we take for the parameters, suggested by their physical 
meaning, are 

8"5' B=I 0.1 
c =  s, R=  T 

We always take the initial condition: Ylo = Y2o = Y3o = 0.1. For these values 
of the parameters the motion is chaotic. We take different values for A and 
in correspondence different orders of Taylor truncation. 

Applying the method of interval analysis for the integration of the 
system (11), the interval grows rapidly and, for a value of T less than 200 it 
explodes. 
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On the other side, for T =  200, ~g1(200) is less than 12, after having 
applied the procedure described in Ref. 1 to take account of all possible 
errors affecting it. A value needed for these corrections is IIF(IlII. We have 
IIF(1)II ~<0.46. For  the global error of one step of integration we take 
cr 10 -15 (we used the Univac 1100 of the University of Rome scientific 
computer center: with double precision its round-off error is of the order of 
0.2 x 10-17). The value p of the proposition is then 

1 
P <~ Pl = 2Tfg~(T) IIFr ~ lO-S 

With A = 10 -2 we have 

N~1(200)~ = 2.4 x 10-10 = p 

so the condition p ~ P l  is satisfied and exp[pT(T)T] is nearly 1. Evaluating 
the sum ~ U ~ l  IIs NA)II every ten steps in k [but the matrix 
5f(kA, lA) is evaluated step by step], we obtain 

N/P 
~KII~(kPA, MAll[ ~ 10 4, 
0 

and the final error is 

P =  10 

eP~'(T)T (21I,,~(kA, NA)H) eIIF(I)IIAl (~(T)o~,~ lO x lO4e~176 

~< ~10 -1~ 

The values found for the orbit parameters doing the integration with dif- 
ferent steps A (and consequently different orders of Taylor truncation in 
order to have the error less than the computer round-off error) are in good 
agreement with this result. The difference between the different values is of 
the order of about l0 -12 

But we went ahead in the integration to T =  1000. The value found for 
IIF(1)[[ is n o w  [IF(1)[[ ~< 0.57, while c~l(1000 ) ~< t02 to which it corresponds 

Pl = 3 x 10 -8 

To have P~Pl we need now to refer to the form of the proposition con- 
tained in Remark 2. It is 

) sup \ o j II,W(jA, kA)[I <~10N 
K<~N 
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and, from the value found for the sum 

N--1 

~ j  1lS~ NA)II ~<2.5N 
0 

it follows that the final error of integration is bounded by 

IXN--X(IO00)I ~ < 5 •  10 -10 

The values found for orbit are well within this bound, the difference being 
of the order of 10 -11. So while interval analysis cannot give any infor- 
mation for a time of integration longer than 200, with our method we can 
have sharp conclusions for a much longer time. 

We observe that, starting from an error of 10-15 in a single step of 
integration, we can hardly hope to obtain a bound better than that repor- 
ted, after 2 x 105 steps of integration, the final error being nearly twice the 
value we obtain simply with the linear propagation of the error. 

We note that in principle, for a fixed time of integration T, better 
results can be obtained with a longer step of integration and higher order 
of Taylor, but obviously there is a limit in this procedure, because, with a 
reasonable number of terms in each step of integration, we have to reach 
the computer precision, and in any case the step of integration has to be 
such that the corrections to (gl(T) are not too large. 

Remark. It is to be stressed that physical consideration suggested 
that small forcing which, by the way, produces a chaotic motion around 
the origin. The smallness of the orbit is the fundamental reason that allows 
to consider so long times of integration. We have to observe in any case 
that the limitations to the present method come from the condition 

2(gZ(T)p [JF(Z)ll T ~ l  

and from the value of IIF(I)IF, which controls the correction needed for 
cgl(T); smaller values of  IlF(1)lr give better corrections and so allow a longer 
time of integration. But if we take a long T, not only can cgl(T ) be bigger, 
but we have to take also p (p <~Pl), bigger, and so at the end we cannot 
always have a result as good as that reported. 

Having in mind a control of the way in which ~I(T) and 
Z ][~S('(jA, NA)t [ grow with T, we found, before applying the corrections, 

c~1(100) ~ 5.63, cg1(200 ) ~< 10.3,  ~1(300) ~< 71.1 

~1(400) ~< 71.1... ~1(1000) ~< 71.1 
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II~(jA, 100)11 ~ 3.4 100 4.3 200 ---y, ~ H=~(j3,200)11 ~ A 

30O 
II~(jA, 300)11 ~< 27 

A ' 
IL~(jA, looo)H ~< 1.9 N 

so we see that cgl(T ), after T=300,  does not grow any more with T. 
Moreover the sum ~2 II~(JA, NA)[I is not necessarily increasing with time, 
even if we have to sum more terms: for T =  300 it takes a value four times 
bigger than the corresponding value for T =  1000. 

4. SOME FURTHER CONSIDERATIONS 

We discussed in Ref. 1 the errors affecting call(T); for example, the 
variation of time with step AI in making sup ]l~(s, t)tl gives a factor 
e II~llm. But in systems like (11) we have a very important indirect control 
of the value found for cd~(T). Considering the quadratic system 

xi = ~ a i j l x j x , -  ~, bo.x j + ci = f i (x )  
j/ J 

if a . l=  aui= 0 and div 2 = - S ~  b.,  we have not only the contraction of 
volumes of its phase space at constant rate, but the same identical contrac- 
tion occurs in the linear system 

= F'(xo(t))z  (12) 

This contraction for both systems is given by the Jacobian 

J ( t )  = e a iv  ~ t  

and the Jacobian of the system (12) is just the determinant of the matrix 
~e(0, t). 

So we know exactly which would be the value of the determinant of 
the matrix 5r t) as a function of t, for any trajectory x(t) ,  and this gives 
an indirect exact control of the values we found for II~(0, 011. Obviously 
the norm of 5~(0, t), i.e., the square root of the maximum eigenvalue of 
~q(0, t). ~ (0 ,  t)*, tells us nothing about volume contraction, but instead 
says how far are evolving points in a neighbourhood of the reference 
solution Xo(t). In any case, if the determinant has exactly the value expec- 
ted, we can have great confidence about the eigenvalues. In our case 
div 2 = - 5 B  = --5/48. We compare e x p ( -  5Bt) with the Jacobian J of the 
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flux defined by (11) and with the determinant of the matrix 50(0, t). The 
values found for T =  10, 100, 200 are the following: 

T = 10 T =  100 T =  200 

J(t) 0.124 514 471 447 0 0.299 294 783 321 x 10 -4 0.895 769 l x 10 -9 

det L,e(0, t) 0.124 514 471 443 9 0.299 294 783 071 x 10-4 0.895 773 7 x 10-9 

e x p [ -  (5/48)t] 0.124 514 471 444 1 0.299 294 783 076 x 10 -4 0.895 773 6 x 10-9 

For 50(0, t) we used a third order expansion (see Ref. 1 ). The Jacobian J is 
evaluated instead with a completely different method, determining step by 
step the matrix of the transformation defined by the flux. In principle J had 
to be more precise than det 50(0, t) because the flux contains terms of 
higher order, but to evaluate J we have to make differences of numbers 
nearly equal, so we lose information. This is also the reason why the values 
of J after T =  280 become unstable and cease to be significant. Another 
reason that makes both J and det 50(0, t) unstable for long times is that 
the errors of the computer become now relatively large. The matrix of the 
flux and the matrix 50(0, t) consist of elements of very different order of 
magnitude, some of the order of the unity and some of the order of the 
determinant of the matrix, so, as expected, when the value of the deter- 
minant has reached the precision of the computer, all further computations 
have no more meaning. For T =  350 we found det 5~ =0.12 x 10 -~5, 
while e x p [ -  (5/48) 350] = 0.14 x 10 -15 and from then on the values found 
for det 5~ t)are random fluctuations around this value, a value that is in 
a good agreement with our statement about the computer error ~. 

We also note that to evaluate Z ]I50(jA, NA)H we have to integrate 
until t = T, saving in the computer memory the values of the matrices at 
regular intervals of time. So it is true that the operation increases linearly 
with N, but we need the computer memory and cannot evaluate it for every 
j, if we have to do, for example, as we did, 10 5 steps of integration or more. 
So a good way of avoiding this difficulty would be to consider the relation 

50(t, T) = 50(0, T)-50(0, t) -1 (13) 

which would give 

50(jA, NA)= 50(0, T)~ 50(0, jA )--~ (14) 

We could now evaluate the sum for every j without using the computer 
memory. Unfortunately in our case the relation (13) is not useful because 
the product 1150(0, T)II �9 1150(0, t )  111 can be much bigger, for example by a 
factor 10 3, than 1[50(t, T)II. The explanation of this surprising behavior is 
very simple and depends on the fact, seen above, that det 50(0, t) goes 

822/41/5-6-10 
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exponentially to zero in t. As a consequence, by increasing t, some eigen- 
value of ~ (0 ,  t)" ~ (0 ,  t)* becomes smaller and smaller, of the order of the 
value of [det 5e(0, 0 ]  2, and so the norm lice(0, t)-lll,  given by the square 
root of the inverse of the smallest eigenvalue, becomes bigger and bigger. 

5. C O N C L U S I O N S  

We say that, in general, we cannot hope to have good results using 
general techniques that do not consider in some way the properties of the 
particular system at hand. The interval analysis gives nearly the best 
possible result for one step of integration, or for very short time of 
integration, but when the interval grows, it still considers the biggest 
possible error for the system in that interval, and so gives amplitudes 
growing rapidly. For example the attractivity of a stationary solution does 
not play any role. In this way only in very special cases we obtain good 
results. 

The method proposed considers very carefully the linear part of the 
system, its fundamental matrix 5e(s, t) is evaluated with only the errors of 
the computer and of the substitution of the pseudotrajectory to the exact 
solution. Only after having considered the linear part, we grossly evaluate 
the higher terms, but now we already extracted the biggest part of infor- 
mation from the system and so the results at the end are still good. 

It has to be stressed that all depends on the possibility, as shown in 
Ref. 1, of evaluating a true not exploding bound for the norms IIL~(s, 011. In 
any case the computation of ~I(T), for a fixed value of IbF(1)LI, takes a com- 
puter time growing quadratically with T, as can be easily understood, once 
we have fixed the maximum value of the correction due to the factor 
e q/~i>ll~l, A~ indicating the time interval used for evaluate cgl(T ). But if p can 
be taken much smaller than the value giving equality in (4), it is enough to 
have a rough evaluation of ~ ( T ) ;  what is more important is the sum 
Z [l~(jA, Nzl)ll, and this is linear in T, even if, as we explained, in some 
cases we still cannot evaluate it for everyj. 
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